Lifewatch

- Large scale european research infrastructure
- Virtual laboratory for study of biodiversity
- E-science, web services, data services, ICT Infrastructure, HPC, GRID, BIG data, workflow
- Increase data generation, real time monitoring data, biosensors
- Construction : 5 years, operation > 20 years

ESFRI European Strategy Forum on Research Infrastructures

Lifewatch.eu

VIRTUAL LABORATORY

LifeWatch is a distributed **virtual laboratory** and will be used for biodiversity research, for climatological and environmental impact studies, to support the development of ecosystem services and to provide information for policy makers in Europe. This large European research infrastructure will consist of several biodiversity observatories, databases, web services and modeling tools. It will be integrating the existing systems, upgrading them were possible and developing new systems where needed.

LIFEWATCH PHASES

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Preparatory phase				Consti	ruction	phase		Operational phase	

Lifewatch.be

Lifewatch.be Antarctic observations

AntaBIF

Funded by the Belgian Science Policy Office, the **AntaBIF** project develops an **innovative Antarctic biodiversity information system, giving access to a distributed network of contributing databases**, according to the principles of the Global Biodiversity Information Facility (**GBIF**). AntaBIF builds a new data discovery tool using two complementary networks and will expand these by using an advanced technical architecture, capable of linking with many potential data resources.

ANTABIF integrates the Scientific Committee on Antarctic Research - Marine Biodiversity Information Network (SCAR-MarBIN), with the biodiversity databases managed by the Australian Antarctic Division, bringing together data from marine and terrestrial realms.

ANTABIF is the data management tool and repository for the biodiversity-related research conducted at the **Princess Elisabeth Antarctica** - **Polar Research Station**. The project uses the best available technology to integrate, share and disseminate all available information on Antarctic Biodiversity.

Its implementation by the Belgian Biodiversity Platform ascertains that ANTABIF can take advantage of the relevant experience of the Belgian GBIF node.

ANTABIF is steered by an International Steering Committee composed of selected experts in the field of Polar biodiversity.

For more information on AntaBIF, please contact Anton Van de Putte.

Lifewatch.be Habitat data from remote sensing

Lifewatch.be Data archeology

DATA ARCHAEOLOGY

a) Dataset inventory

Relevant datasets will be identified based on:

- 1) Literature (present)
- 2) Interviews with data collectors (future)
- 3) Expert opinion on data needs (future)

A selection of reports and theses from the Belgian Marine Bibliography (BMB) already exists. This selection identified 1369 possible datasets. The BMB focuses on research activities performed by Belgian scientists or in the Belgian Part of the North Sea.

b) Prioritization

6

Prioritization is needed for relevance and scope, data type, time period, geographic area, functional group, risk of loss, ease of digitization, data availability and the expert's insight.

c) Data capture

Data in old publications will be digitized. Data owners will be contacted to retrieve data files. If the data cannot be delivered by the data owner, data will be digitized from the publication. All data will be stored in a standard data format.

d) Metadata generation

All datasets will be described using the Integrated Marine Information System (IMIS). All metadata will be disclosed through the LifeWatch.be website.

e) Data integration and archiving

All data will be integrated in the LifeWatch data systems. The data formats will be stored in the Marine Data Archive (MDA) to ensure availability for future research.

f) Data accessibility

All captured data will be made available through the LifeWatch infrastructure.

Lifewatch.be Collaborative platform for sensor data processing

Lifewatch.be Taxonomic backbone

CONTENT

The data required within a taxonomic backbone can vary depending on the needs and demands of the biodiversity and ecosystem research community. However, based on previous experience and discussions a set of key taxonomic and species/taxon related information could be defined :

Integrating existing databases and building access services

The first level aims at setting up a central taxonomic backbone by integrating the existing databases as contributing components and build access services bringing the data to the LifeWatch infrastructure.

Supporting database management

The second level aims at completing and updating the taxonomic and species related data in the different component databases. **Currently** the following actions have been undertaken: digitization of publications (e.g. marine viruses, insects, Kinoryncha), completing taxonomic gaps (Mollusca, Ostracoda) by working with editor grants, updating global and regional lists. **Currently** the focus is on updating WoRMS, FADA and SCAR-MarBIN.

Supporting taxonomic societies

The third level aims to organize and mobilize the taxonomic experts that provide the data by supporting the taxonomy societies in which they participate. LifeWatch will provide logistic and financial support for workshops and meetings with and between the societies.

LifeWatch taxonomic backbone available web services

- Taxon services
 - Get ID's and taxon authorities (PESI & WoRMS)
 - Get distributions for a specific taxon ID (PESI & WoRMS)
 - Get scientific name for common name (PESI & WoRMS)
 - Taxon match: match scientific name with several species registers:
 - WoRMS
 - Catalogue of Life (CoL)
 - Integrated Tax. Information System (ITIS)
 - Pan-European Species Directories (PESI)
 - International Plant Names Index (IPNI)
- Geographical services

Based on latitude-longitude:

- Get ICES Ecoregions
- Get IHO sea areas
- Get Large Marine Ecosystems of the World

- Index Fungorum (IF)
- Global Names Index (GNI)
- PaleoDB
- African Register of Marine Species (AfReMaS)

- ...

LifeWatch taxonomic backbone - concept

Example questions to be answered by the taxonomic backbone:

- Which (macro)benthic species live in the North Sea at depths between 50-100m?
 - Input:
 - ✓ Trait(s): benthos (macro)
 - ✓ Biogeography: North Sea; defined depth-range
 - Output:
 - ✓ Taxonomy (based on WoRMS): species list
- Where does species X appear?
- Which invasive pelagic species are known to occur in the Black Sea?
- Which species from the Habitat/Bird Directive are on the IUCN Red List?
- How does my marine species list relate to the African Register of Marine Species?

=> LifeWatch data services available (or in development) to answer these questions

LifeWatch taxonomic backbone traits and observations

World databases of marine species have now been established but are limited to taxonomic (e.g. WoRMS) and distribution (e.g. OBIS) data. The benefits of these databases could be multiplied by associating species with richer ecological and biological information.

For both, standardized (accepted) trait vocabularies should be used

=> data integration & comparison possible

Traits – some examples:

- Feeding type
- Size class
- Habitat
- Sensitivity
- Invasiveness
 - ...

LifeWatch taxonomic backbone – interface

Offer users an easy-to-use and interactive interface, including web services

1. Simple search:

- ✓ Search taxon name
- ✓ Get overview of systems holding this name and related info

C	LIFEWATCH Regional portal		Taxonomic backbone
Comm contai e.g. fisl Scienti begins e.g. De [Advan	on name ins h, whale ific name s with lphinus delphis ced search]	Search Search	

Simple search - result

Species Y Linnaeus, 1758

Taxonomy

WoRMS: Animalia – Mollusca – Bivalvia - ... FADA: Animalie – Mollusca – Bivalvia - ... RAMS: Animalia – Mollusca – Bivalvia - ...

Occurrence - distribution

Show map, based on literature-derived occurrences (WoRMS / FADA / RAMS) and actual distributions from e.g. EurOBIS

Traits

List systems where trait-info is available (environment, status, ecology ...) Link to TraitBank from EoL?

Vernaculars

WoRMS: 20 vernaculars FADA: not found RAMS: 20 vernaculars

Literature

WoRMS : 7 sources (link), including: original description (link) redescription (link) identification guide: 2 (links)

FADA: not found

RAMS: 3 sources (link), including: original description (link) redescription (link)

BHL: X results (link)

IMIS / OCR: Y results (link)

Images

WoRMS: 10 images FADA: not found RAMS: 6 images

2. Advanced search:

Example: which invasive pelagic species are known to occur in the Black Sea? Where are they found?

Search criterium 1:

-Trait = pelagic (pick-lists of traits, organized per trait group or category)

AND

Search criterium 2:

- Trait = invasive

AND

Search criterium 3:

-Geographic area = Black Sea => or give area by bounding box => or pick-lists of IHO / EEZ / country

AND

Search criterium 4:

- Limit to species belonging to ... (specify taxon group)

Select your results output:

- Species list (with classification)
- List of available distribution records
- Map available distribution records

Advanced search – result: Search results for "pelagic – invasive – Black Sea"

Species list [view] [download]

- Mnemiopsis leidyi
- Beroe ovata
- ...

Distribution records [view] [download]

Distribution map(s)

3.Available web services http://www.lifewatch.be/data-services

LIFEWA Regional porta	ATCH		• Homepage • Proje	ct + Da	ata services	Downloads	 Sensor network 	• Login
New job	Results Manual	Use cases					prototyp	e - 175:180N Da
1. Upload you Select one of To work with If you are nev	Ir file the demo data files a other data files, pleas v to this service, pleas	nd choose from seve se log in. se read the manual.	eral web services, models and applications to process	the data.				
	File	Brov	vse Row of	lelimiter Ret	urn & linefeed (C	R+LE) V Fir	rst row contains column	names
2. Select web	Maximum rows in oservices	file:10000	Dat	a format lifev	wat A			
Servicetyp	e Name	Source	Description	Environment	Status			
Data validat	ion and QC services							
Marineregio	ns gazetteer services							
Taxon obser	vations							
Taxon servic	es							
🗖 ws	OBIS observations	OBIS	Returns all observation points (latitude and longitude) in the Ocean Biogeographic Information Syste Read more	marine	Under developm	ent		
□ ws	get AphialD World Register of Marine Species (WoRMS)	WoRMS	Returns the (first) exact matching AphialD for a given taxon name, based on ScientificName in the up Read more	marine	Good			
□ ws	get authority World Register of Marine	WoRMS	Returns the authority according to WoRMS for a given taxon name, based on ScientificName in the uplo Read	marine	Good			

Marine trait data

World databases of species have now been established but are limited to taxonomic (e.g. World Register of Marine Species,) and distribution (e.g. Ocean Biogeographic Information System) data.

The benefits of these databases could be multiplied by associating species with richer ecological and biological information. 11

TRENDS in Ecology and Evolution Vol.21 No.4 April 2006

-----d-----

Rebuilding community ecology from functional traits

Brian J. McGill¹, Brian J. Enquist², Evan Weiher³ and Mark Westoby⁴

¹Department of Biology, McGill University, Montreal, QC, Canada, H3A 181 ¹Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA ³Department of Biology, University of Wisconsin – Eau Claire, Eau Claire, WI 54702, USA ⁴Department of Biological Sciences, Macquarie University, NSW 2109, Australia

LETTER

Ecology Letters, (2007) 10: 1170-1181

doi: 10.1111/j.1461-0248.2007.01117.x

The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level

Trait-Based Community Ecology of Phytoplankton

Elena Litchman1 and Christopher A. Klausmeier2

Kellogg Biological Station, ¹Department of Zoology, and ²Department of Plant Biology, Michigan State University, Hickory Corners, Michigan 49060; email: litchman@msu.edu, klausme1@msu.edu REVIEW

Microbial Biogeography: From Taxonomy to Traits

Jessica L. Green, 1* Brendan J. M. Bohannan, 1 Rachel J. Whitaker²

The biogeographic variation of life has predominantly been studied using taxonomy, but this focus is changing. There is a resurging interest in understanding patterns in the distribution not only of taxa but also of the traits those taxa possess. Patterns of trait variation shed light on fundamental questions in biology, including why organisms live where they do and how they will respond to environmental change. Technological advances such as environmental genomics place microbial ecology in a unique position to move trait-based biogeography forward. We anticipate that as trait-based biogeography continues to evolve, micro- and macroorganisms will be studied in concert, establishing a science that is informed by and relevant to all domains of life.

And so it was indeed: she was now only ten inches high, and her face brightened up at the thought that she was now the right size for going though the little door into that lovely garden. Lewis Carroll (1865) ronmental conditions. This concept was prompted by Martinus Willem Beijerinck and concisely summarized by Lourens Gerhard Marinus Baas Becking in the widely referenced quote, "everything is everywhere, but the environment selects"

Traditional community ecology

Environmental stressors

Species abundances

		BIO3-E85-1C	EPI	Ampharetidae	Amage	Amage scupta	1
		8103-EBS-1C	EP1	Ampharetidae	indet	Ampharetidae indet (juvs.7)	13
		8103-EBS-1C	SUPRA	Amphareticae	Sosanopsis	Sosanopsis kerguelensis	1
		8/03-E8S-1C	SUPRA	Ampharetidae	Anobothrus	Anobothnus sp. A	1
		8/04-E85-2A	(PI	Ampharetidae	Anobothrus	Anobothrus sp. A	1
		8PO4-E85-28	EPI	Ampharetidae	Anobothrus	Anobolinus sp. A	8
		BIO4-EBS-3A	EPI	Amphareticiae	Glyphanostonum	Glyphanostonum sp. A	1
		BIO4-EBS-3A	EPI	Ampharetidae	Anobothrus	Anobothrus sp. A	3
		8/04-EBS-3A	SUPRA	Ampharetidae	Amage	Amage sculpta	1
		8IO4-EB5-3A	SUPRA	Amphanetidae	Anobothrus	Anobothrus so. A	1
		BIO4-EBS-3B	EPI	Ampharetidae	Anobothrus	Anobothrus so, A	9
		8IO4-EBS-3B	EPI	Amphare6dae	Sosancosis	Sosancosis kortexioneis	1
		BIO4-EBS-3C	EPI	Ampharetidae	Amage	Amage sculpta	4
		BOA-FRS-3C	193	Amphareticiae	Amphictels	Amohictels sp. A	1
		BIO44 BS-3C	IPI	Ampharetidae	Anoholtous	Apphotoca so A	22
		80418530	6.01	Americantician	Gunharoatonam	Combangation on A	21
		BIOM FRS. MC	SLIPNZA.	Ampharendan	Association	Assabalizing an A/FBV1	
		BIOLERENC	ST IERA	Amphanoldan	Account of a	Analysian and	
T .		804-685-30	EPI	Ampharotician	Fusiendha	E-september of A	
Lomporaturo		BITH EBS. 16	EDI	Amphaselidae	Mallings (Maussier)	Molinas Blancas 21 es. A	
Terriberature		BIO4-CBS-3F	CPI	Amphanetocae	Accountry (Moyamus /)	Anobeline in A	34
		BIO4-CBS-3F	EPI	Ampharetocae	Anooorrus	Arcoberrus sp. A	- 24
		8/04-685-3F	EPI	Amphaneticae	Picel.	Ampharetocae indet (juvs.r)	12
		8/04-C88-3F	EP1	Ampharescae	Gyphanosionum	Gyphanosionum sp. A	
		BI04-EBS-3F	EP1	Amphareocae	Sosanopsis	oosanopsis kerguerensis	1
nH		BIO4-EB5-3F	EPT	Amphareopae	10 12	Di 08	
		BIO4-EBS-3F	SUPRA	Amphareticae	Anopothrus	Anobothrus sp. A	1
		804-085-34	SUPRA	Amphareboae	Sosanopsis	Sosanopsis kergueransis	3
		804-185-3F	SUPRA	Amphare6dae	Eusamytha	Eusemytha ap. A	3
		805-685-28	SUPHA	Amphareticae	10 10	10 KI	1
		8105-E85-38	EPI	Ampharetidae	Glyphanostonum	Gryphanostonum sp. A	1
grain size		BIO5-EBS-3B	SUPRA	Amphaneticiae	Anobothrus	Anobothnus sp. A	1
		8/05-EBS-3B	SUPRA	Ampharetidae	Sosanopsis	Sosahopsis kerguelensis	1
0		BIO5-EBS-3D	EPI	Ampharetidae	Anobothrus	Anobothrus sp. A	3
		BIO5-EBS-3D	SUPRA	Ampharetidae	Glyphanoslonum	Giyphanostonum sp. A	5
	\longrightarrow	8106-EBS-2A	EPI	Ampharetidae	Samytha?	Samytha sp. A	3
a una sata a sa a sa		BIO6-EBS-2A	SUPRA	Ampharetidae	Samytha?	Samytha sp. A	2
current sneed		8/06-E85-2A	SUPRA	Ampharetidae	Amphictelis	Amphictels sp. A	.1.
	2	8/06-U85-3E	SUPRA	Ampharetidae	Glyphanostonum	Gyphanostonum sp. A	1
•	r	8IO3-E85-1C	EP1	Amphinomidae	Paramaphinome	Paramaphinome australia	1
	•	BIO4-EBS-3C	SUPRA	Amphinomidae	Paramaphinome	Paramaphinome australis	1
		BIO4-EBS-3B	EPI	Polynoidae	Antarctinge	Antarctinoe ferox	1
DOC flux		BIO4-EBS-3C	EPI	Aphroditidae	Aphrodita	Aphrodita sp.	1
		BIO4-EBS-3F	SUPRA	Aphroditidae	Aphrodita	Aphrodita sp.	1
		BIO4-EBS-3E	EPI	Capitelidae	Notomastus	Notomastus latericeus	5
		8/06-EBS-28	SUPRA	Capitellidae	Notomastus	Notomastus latericeus	1
		BIO6-EBS-2B	SUPRA	Capitolidae	Capitella	Capitella sp.	1
		8104-E85-3A	EPI	Capitelidae	Notomastus	Notomastus latericeus	1
codimont TOC		8104-E85-3C	(P)	Capitelicae	Notomastus	Notomastus laterceus	4
seament IUC		BIO6-EBS-2A	EPI	Capitellidae	Notomastus	Notomaatus latericeus	1
		BIO6-EBS-2A	SUPRA	Captelidae	Notomastus	Notomestus latenceus	2
		(805-E85-3E	[P]	Captelldae	Captela	Captella so	1
		8105-E85-3E	EPI	Captelidee	Notomastus	Notomestus latericeus	1
		BIO3-EBS-1C	EPI	Charlooteridae	Charlooter a	Chaetodenis varionedatus	2
		BICKERS 28	EPI	Chaelorderdae	Chaeloniet e	Chaeforden is uprimerable	
		BIOAFBS.3C	EPI	Chaelonioridae	Chaetonioutae	Chaelooloridae so.	
		BIOA FBS 3F	RUIPIRA	Chaetoniedate	Phyliochaetoplanas	Phyliochaetories socialis	
		BOALBS 25	SUIPICA	Chaelonteridae	Photochustroberus	Bhullerinastroter as aprinis	
		0100-200-3E	TOOLANY	Charolopiendae	Priytocribetoclorus	rigitoriactopterus socialis	1

imatulidae

Cimatulidae Cimatulidae

imatulidae

matulidae

imatulidae

imatulidae

imatulidas

Chaelozone indet indet Chaelozone Chaelozone

Aphelochaeta Aphelochaeta Chaetozone Smatulidae indel Smatulidae indel

aetozone setos

etozone sp.

Apheiochaeta sp. A

Aphelochaeta sp. 8

haelozone pinguis

Trait-based community ecology

Environmental stressors

Trait abundances

		##		R-BEN	R-PEL	BS-MAC	HE1-NO	HE1-YES	HE2-EPI	HE2-INF	HE3-MAJ	HE3-MIL
		##	AC1	17.5	0.0	17.5	15.5	2.0	2.0	0.0	0.0	2.0
		##	B1	25.0	0.0	25.0	23.0	2.0	1.0	1.0	1.0	1.0
Tomporaturo		##	B2	21.0	0.0	21.0	21.0	0.0	0.0	0.0	0.0	0.0
remperature		##	B3	17.0	0.0	17.0	17.0	0.0	0.0	0.0	0.0	0.0
		##	BH	267.0	1.0	268.0	260.0	8.0	7.0	1.0	0.0	8.0
ъЦ		##	C1	151.5	0.0	151.5	139.5	12.0	10.5	1.5	0.0	12.0
рп		**	C12	50.0	0.0	50.0	47.5	2.5	2.5	0.0	0.0	2.5
		##	C14	76.3	0.7	77.0	75.3	1.7	1.7	0.0	0.0	1.7
		##	C4	105.0	0.0	105.0	91.0	14.0	9.5	4.5	1.5	12.5
grain size		##	C7	141.0	0.0	141.0	134.3	6.7	5.0	1.3	0.3	6.0
U	\longrightarrow	##	GKF	41.0	0.0	41.0	39.0	2.0	2.0	0.0	0.0	2.0
	,	##	HiPro	243.0	0.0	243.0	227.0	16.0	15.0	1.0	1.0	15.0
current speed	2	##	MT1	394.2	0.0	394.2	392.0	2.2	1.8	0.3	0.0	2.2
	•	##	MT2	383.0	0.0	383.0	356.0	27.0	22.5	4.5	0.0	27.0
		##	MT3	227.8	0.5	228.2	213.0	15.2	14.0	1.2	0.2	15.0
POC flux		##	MT4	137.5	0.0	137.5	120.0	17.5	16.0	1.5	0.0	17.5
1 OC Hax		##	MT5	50.7	0.0	50.7	49.0	1.7	1.7	0.0	0.0	1.7
		##	MT6	22.2	0.0	22.2	18.0	4.2	3.5	0.0	0.0	3.5
sediment TOC		##	NB2	94.0	0.0	94.0	70.0	24.0	14.0	10.0	0.0	24.0

Activities

1. Set up trait classification (with global marine biology community (WoRMS,...))

Example reproduction traits hierarchy for reproduction from Reusser & Lee (2011)

	Pilot project 1	Pilot project 2	Pilot project 3
Who	A. Iglikowska/G. Boxshall	A. McQuatters-Gollop et al.	J. Hosegood/T. Webb
Taxonomic scope	Planktonic Copepoda	Planktonic taxa	Benthic taxa
Geografic scope	Global	Global	UK and North Sea
Number of taxa	± 2500 species	± 400 taxa	625+330 species
Start date	01/06/2013	01/06/2013	01/06/2013
End date	30/11/2013	30/09/2013	30/09/2013
Defined attributes	 (1) Organism type (2) Time in plankton (3) Body size (4) Feeding type (5) Spawning method 	 (1) Organism type (2) Time in plankton (3) Body size (4) Shape (form) (5) Feeding method (6) Spawning method 	 (1) Body size (2) Feeding method (3) Diet (4) Developmental mechanism (5) Reproductive frequency
	 (6) Larval feeding strategy (7) Number of life stages (8) Habitat (9) Depth range 	 (7) Life stage (name, #) (8) Sociability (9) Toxicity (10) Habitat (11) Climate province 	 (6) Reproductive period (7) Reproductive timing (8) Age at maturity (9) Fecundity (10) Egg size (11) Larval feeding strategy (12) Larval duration (13) Life span (14) Sociability (15) Habitat (16) Movement method
	(9) Depth range	(11) Climate province(12) Sea areas	(16) Movement method(17) Migration

	Pilot project 4	Pilot project 5	Pilot project 6
Who	A. Taylor/M. Tasker	O. De Clerck <i>et al.</i>	S. Pagad et al.
Taxonomic scope	Seabirds and coastal birds	Macro-algae	Invasive species
Geografic scope	Europe	Europe	Global
Number of taxa	79 + 49 species		/
Start date	01/07/2013	01/10/2013	01/06/2013
End date	30/09/2013		31/08/2013
Defined attributes	(1) Body size	(1) Morphofunctional class.	(1) Occurrence
	(2) Diving depth	(2) Life cycle	(2) Provenance
	(3) Egg size	(3) Flowering	(3) Invasiveness
	(4) Fecundity	(4) Zonation	(4) Native country
	(5) Feeding method	(5) Substrate	(5) Native sea area
	(6) Longevity - Adult life span	(6) Habitat	(6) Source country
	(7) Longevity - Age at maturity	(7) Drifting	(7) Source sea area
	(8) Oil sensitivity rate	(8) Spawning method	(8) Introduced country
	(9) Predominant food	(9) Endemicity	(9) Introduced sea area
	(10) Seasonal occurrence	(10) Ecophysiological data	(10) Introduced date
	in European waters		(11) Abundance
	(11) Sociability		(12) Population trend
	(12) Susceptibility to lowered		(13) Management
	forage fish availability		(14) Impact
	(13) Susceptibility to wind turbines		(15) Vector – Dispersal

2. Collecting and standardizing data

	Α	В	C	D	E	F	G	Н
1	AphiaID	Authority	Authority	egg laying mode	Reference (Sources Chad Walter) or expert opinion	Notes	nal Ref (not in \	Larval feeding strategy
2								
3	345918	Acartia (Acanthacartia) bacorehuiensis	Zamora-Sanchez & Gomez-Aguirre, 1985	broadcast spawner	Expert opinion based on congeners			planktotrophic
4	345919	Acartia (Acanthacartia) bifilosa	(Giesbrecht, 1881)	broadcast spawner	121420			planktotrophic
5	345920	Acartia (Acanthacartia) bilobata	Abraham, 1970	broadcast spawner	Expert opinion based on congeners			planktotrophic
6	345921	Acartia (Acanthacartia) californiensis	Trinast, 1976	broadcast spawner	118295			planktotrophic
7	345922	Acartia (Acanthacartia) chilkaensis	Sewell, 1919	broadcast spawner	Expert opinion based on congeners			planktotrophic
8	345932	Acartia (Acanthacartia) dweepi	Haridas & Madhupratap, 1978	broadcast spawner	Expert opinion based on congeners			planktotrophic
9	345933	Acartia (Acanthacartia) fossae	Gurney, 1927	broadcast spawner	Expert opinion based on congeners			planktotrophic
10	416441	Acartia (Acanthacartia) giesbrechti	Dahl, 1894	broadcast spawner	Expert opinion based on congeners			planktotrophic
11	345934	Acartia (Acanthacartia) italica	Steuer, 1910	broadcast spawner	76793			planktotrophic
12	345935	Acartia (Acanthacartia) levequei	Grice, 1964	broadcast spawner	Expert opinion based on congeners			planktotrophic
13	416442	Acartia (Acanthacartia) pietschmani	Pesta, 1912	broadcast spawner	Expert opinion based on congeners			planktotrophic
14	345937	Acartia (Acanthacartia) plumosa	Scott T., 1894	broadcast spawner	Expert opinion based on congeners			planktotrophic
15	345940	Acartia (Acanthacartia) sinjiensis	Mori, 1940	broadcast spawner	118279			planktotrophic
16	416443	Acartia (Acanthacartia) spinata	Esterly, 1911	broadcast spawner	Expert opinion based on congeners			planktotrophic
17	345942	Acartia (Acanthacartia) steueri	Smirnov, 1936	broadcast spawner	118269			planktotrophic
18	345943	Acartia (Acanthacartia) tonsa	Dana, 1849	broadcast spawner	118295			planktotrophic
19	345946	Acartia (Acanthacartia) tropica	Ueda & Hiromi, 1987	broadcast spawner	Expert opinion based on congeners			planktotrophic
128	346143	Batheuchaeta enormis	Grice & Hulsemann, 1968	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
129	346144	Batheuchaeta gurjanovae	(Brodsky, 1955)	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
130	346145	Batheuchaeta heptneri	Markhaseva, 1981	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
131	104277	Batheuchaeta lamellata	Brodsky, 1950	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
132	341258	Batheuchaeta peculiaris	Markhaseva, 1983	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
133	341259	Batheuchaeta pubescens	Markhaseva, 1986	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
134	346146	Batheuchaeta tuberculata	Markhaseva, 1986	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
135	342428	Bradyetes curvicornis	Markhaseva & Schulz, 2007	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
136	221282	Bradyetes florens	Grice & Hulsemann, 1967	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
137	104279	Bradyetes inermis	Farran, 1905	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
138	104280	Bradyetes matthei	Johannessen, 1976	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
139	346170	Bradyetes pacificus	Ohtsuka, Boxshall & Shimomura, 2005	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
140	342429	Bradyetes weddellanus	Markhaseva & Schulz, 2006	broadcast spawner	Expert opinion based on no published record ever of egg sacs in this genus			lecithotrophic
141	346171	Bradyidius angustus	(Tanaka, 1957)	broadcast spawner	Expert opinion based on B. armatus			lecithotrophic
142	146735	Bradyidius armatus	(Vanhöffen, 1897)	broadcast spawner	102299	gs attached in groups to substra	te	lecithotrophic
143	346172	Bradyidius arnoldi	Fleminger, 1957	broadcast spawner	Expert opinion based on B. armatus			lecithotrophic
144	357476	Bradyidius brevispinus	Bradford, 1969	broadcast spawner	Expert opinion based on B. armatus			lecithotrophic

 Link it to taxonomic and biogeographic databases
 write workflows that could help marine community and functional ecologist answering fundamental questions

Marine trait database

Marine trait database

Marineregions.org

towards a standard for georeferenced marine names

Final goal: testing fundamental macro-ecological research hypothesis

■ Is the functional diversity higher in the deep sea?

- Effect of temperature changes on functional diversity
- Are organisms bigger towards the poles?

challenge

- Van veen grab at x,y,t
- Observation data :
 - Set of present species P{}
 - X,Y
 - Depth : 20m
 - Sediment : sand
- Analysis
 - What species do we expect to find?
 - What species are absent?
 - What are possibly wrong identifications?
 - What are common, what are rare findings?

Validation of observations workflow

Source	Analysis	Result	
Observation	identify species take position	P{} observed species x,y	
Marine regions	region of x,y	Westhinder bank North sea	
OBIS occurence data WoRMS distribution data LW ENM data	species in North sea	S{}	
TB – Habitat Traits	S{Species in benthos}	Sb{} benthic species	
TB – Size Traits	Sb{X < size < Y}	Sm{} macrobenthic species	
Observation	take depth describe substrate	20m soft sediment	
TB – Environment Traits	Sm{Species at 20m, soft sediment}	E{} expected species	
	$E{} - P{}$ $P{} - E{}$	A{} absent species E{} possible errors U{} unique observations	

Big data challenge

- Validationworkflow(cruise samples)
 - 1 d sampling, 2 w processing, 200 observations
- Validationworkflow(project samples)
 - 12 d sampling, 24w, 2400 obs.
- Validationworkflow(dataset)
 - 5000 obs.
- Validationworkflow(sensordata)
 1000 obs/d , realtime processing