
PARALLELIZING R FUNCTIONS 

 
LIFEWATCH GREECE PROJECT 

 

HCMR, Crete 
– June 2014 



Parallel Functions in R 

 The Team 

 
  Anastasis Oulas  

PhD – Molecular Biology and Biomedicine 

  Nikolas Pattakos 
MSc – High Performance Computing 

  Theodore Patkos 
PhD – Computer Science 



 The Problem 



The Problem 

 The R language is 

 single-threaded 

 memory bound 

 

 Until recently the largest square matrix was  
46*103 46*103 

 

 The objective is to take advantage of parallel 
computing solutions to 

 overcome memory barriers (big data segmentation) 

 perform task segmentation (multi-cores, cluster computing) 



The HCMR Cluster 

 

 The HCMR Biocluster comprises two queues 

 BigMem: Intel E5-2667 12 cores@2.9 with 385GB 

RAM 

 

 Batch: Intel X5680 96 cores@3.33 with 48GB ram 



 The Approach 



The Approach 

 We use Rstudio and experiment with 

several R packages, such as 

 pbdR, bigmemory 

 RMPI, pbdMPI 

 Parallel, multicore, snow 

 over Linux and OpenMPI 

implementations. 

Linux 

OpenMPI 

Language R 

Parallel R packages 

Parallel version 

of existing 

functions 

Your code 



The Approach 

 We focus on the parallelization of functions at two 

levels of abstraction 

 Primitive functions (outer product, matrix multiplication 

etc) 

 

 

General 

functions 

(taxa2dist, 

taxondive, 

simper, pca etc.) 

 

 



Example 1: Outer product 

 The outer product of vectors is used by many functions 

 

 

 

 

 If the vectors are big, the matrix does not fit in 

memory. 



Example 1: Outer product 

 We segment the first vector p parts and each core will 

calculate m=N/p rows 

 

 

 

 

 



Example 1: Outer product 

 In special cases, we perform optimized allocation 

reducing the number of computations. 

 

 

 

 

 



Low- vs High-level Parallelization 

 It can be much more efficient to focus on high-level 

functions, rather than low-level operations. 

 

 For instance, we take advantage of the fact that data 

are already distributed and may need to be reused.  

 



Example 2: Taxondive (vegan) 

 The Taxondive fuction 

 del <-  

 apply(comm,1, function(x)  

   sum(as.dist(outer(x,x))*dis)) 

 



Example 2: Taxondive (vegan) 

 The Taxondive fuction 

 del <-  

 apply(comm,1, function(x)  

   sum(as.dist(outer(x,x))*dis)) 

 

 comm is a MxN matrix, where typically M<<N 

 

 As such, outer(x,x) is a NxN matrix, usually huge. 



Example 2: Taxondive (vegan) 

 The Taxondive fuction 

 del <-  

 apply(comm,1, function(x)  

   sum(as.dist(outer(x,x))*dis)) 

 

 del, on the other hand, is a vector of length M, usually 

small. 



Example 2: Taxondive (vegan) 

 The Taxondive fuction 

 del <-  

 apply(comm,1, function(x)  

   sum(as.dist(outer(x,x))*dis)) 

 dstar <-  

 apply(comm,1, function(x)  

      sum(dis*(xx  

  <- as.dist(outer(x, x))))/sum(xx)) 

 We need to multiply both from the left and from the 

right. 

 Outer is already distributed 

 



 Experimental valuation 



Experimental Evaluation 

 Two different implementations of Taxa2Dist 



Experimental Evaluation 

 Scalability and performance 



Experimental Evaluation 

 The problem here is not time, but data size 



 Goals and Open Problems 



The R Statistical Processing vLab 

 From the UI 

 The user will upload 
R scripts 

 

 The system will 
recognize functions 
that can be 
parallelized 

 

 Information 
regarding expected 
time based on input 
data will also be 
displayed 

 

 



Open problems 

 It is not certain that the parallel solution will be 

more profitable in all cases 

Our evaluation will offer evidence for better resource 

management 

 

 We need to decide which functions to parallelize 

(the code for many functions is not always 

available to us)  

 

 

 



 Thank you! 


